Specificity and Apoptotic Function FOXO Transcription Factors Control E2F1 Transcriptional
نویسندگان
چکیده
The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction ofmultiple apoptotic genes.We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-mediated silencing of FOXO impaired E2F1 binding to the promoters of cooperative target genes. A FOXO3 mutant insensitive to inactivation by survival kinases rescued the inhibitory effect of growth factor signaling on E2F1-mediated transcription and apoptosis. The E2F1/ FOXO axis is frequently blocked in cancer, as evidenced by the specific downregulation of the FOXO-dependent E2F1 transcriptional program in multiple cancer types and by the association of a reduced E2F1/FOXO transcriptional program with poor prognosis. HDAC and phosphoinositide 3-kinase (PI3K) inhibitors were identified as specific activators of E2F1/FOXO transcription, acting to enhance E2F1-induced apoptosis in a FOXO3-dependentmanner. Notably, combining the histone deacetylase inhibitor vorinostat with a PI3K inhibitor led to enhanced FOXO-dependent apoptosis. Collectively, our results identify E2F1/FOXO cooperation as a regulatory mechanism that places E2F1 apoptotic activity under the control of survival signaling. Therapeutic reactivation of this tumor suppressive mechanismmay offer a novel broad-acting therapy for cancer. Cancer Res; 73(19); 6056–67. 2013 AACR.
منابع مشابه
Tumor and Stem Cell Biology FOXO Transcription Factors Control E2F1 Transcriptional Specificity and Apoptotic Function
The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction ofmultiple apoptotic genes.We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-mediate...
متن کاملFOXO transcription factors control E2F1 transcriptional specificity and apoptotic function.
The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction of multiple apoptotic genes. We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-media...
متن کاملSpecificity in the activation and control of transcription factor E2F-dependent apoptosis.
Previous work has demonstrated a role for the E2F1 gene product in signaling apoptosis, both as a result of the deregulation of the Rb/E2F pathway as well as in response to DNA damage. We now show that the ability of cells to suppress the apoptotic potential of E2F1, as might occur during the course of normal cellular proliferation, requires the action of the Ras-phosphoinositide 3-kinase-Akt s...
متن کاملThe complex biology of FOXO.
FOXO transcription factors control proliferation, apoptosis, differentiation and metabolic processes. Loss of FOXO function has been identified in several human cancers, and results in increased cellular survival and a predisposition to neoplasia, especially in epithelial cancer. FOXO factors are therefore bona fide tumor suppressors, and their potential use as therapeutic targets in cancer has...
متن کاملE2F1-Mediated Induction of NFYB Attenuates Apoptosis via Joint Regulation of a Pro-Survival Transcriptional Program
The E2F1 transcription factor regulates cell proliferation and apoptosis through the control of a considerable variety of target genes. Previous work has detailed the role of other transcription factors in mediating the specificity of E2F function. Here we identify the NF-YB transcription factor as a novel direct E2F1 target. Genome-wide expression analysis of the effects of NFYB knockdown on E...
متن کامل